https://github.com/AlexeyAB/darknet#custom-object-detection
GitHub - AlexeyAB/darknet: YOLOv4 / Scaled-YOLOv4 / YOLO - Neural Networks for Object Detection (Windows and Linux version of Da
YOLOv4 / Scaled-YOLOv4 / YOLO - Neural Networks for Object Detection (Windows and Linux version of Darknet ) - GitHub - AlexeyAB/darknet: YOLOv4 / Scaled-YOLOv4 / YOLO - Neural Networks for Object ...
github.com
1. CUDA Version & GPU Check
!nvcc --version
!nvidia-smi
2. cudnn Version Check
!ls -l /usr/local
3. Custom Data_Set
from google.colab import drive
drive.mount('/content/drive') #Google Drive Mount
3-1. 'custom_data' & 'darknet' 설치경로 설정
!mkdir /content/yolo_custom_modeling
%cd /content/yolo_custom_modeling
3-2. 학습 데이터 Upload
!ls -l '/content/drive/My Drive/Colab Notebooks/datasets/maskDataSet.zip'
!unzip '/content/drive/My Drive/Colab Notebooks/datasets/maskDataSet.zip'
!ls -l '/content/yolo_custom_modeling'
4.Train vs. Test Split Setting
4-1. 'labelled_data.data' 파일 생성
!python creating-files-data-and-name.py
!ls -l dataset/labelled_data.data
4-2. train 및 test 데이터 분류 파일 생성
!python creating-train-and-test-txt-files.py
!ls -l dataset/*.txt
5. 'darknet' Setting
5-1. 'darknet' Clone
!git clone https://github.com/AlexeyAB/darknet.git
%ls -l
5-2. 'Makefile' Configuration
%cd darknet/
!ls -l Makefile
!sed -i 's/OPENCV=0/OPENCV=1/' Makefile
!sed -i 's/GPU=0/GPU=1/' Makefile
!sed -i 's/CUDNN=0/CUDNN=1/' Makefile
!sed -i 's/CUDNN_HALF=0/CUDNN_HALF=1/' Makefile
5-3.'darknet' Installation
%%time
!make
6. 'darknet' Learning
6-1. 실행권한 설정
!ls -l darknet
!chmod +x darknet
!./darknet detector
6-2. 실행환경 설정
%cd ..
!mkdir backup
!ls -l
!ls -l dataset/labelled_data.data
-rw-r--r-- 1 root root 113 Apr 5 04:11 dataset/labelled_data.data
!ls -l dataset/yolov3-tiny-custom.cfg
-rw-r--r-- 1 root root 1967 Oct 6 09:26 dataset/yolov3-tiny-custom.cfg
6-3.학습 실행
%%time
!darknet/darknet detector train dataset/labelled_data.data dataset/yolov3-tiny-custom.cfg -dont_show
6-4.학습된 모델 확인
!ls -l ../backup
7. 학습결과 확인
7-1. 'coco.names' Update
!cp -f /content/yolo_custom_modeling/dataset/image/classes.names /content/yolo_custom_modeling/darknet/data/coco.names
coco.names 파일에 검출할 물체의 이름이 저장
7-2. Object Detection 실행
!./darknet detect ../dataset/yolov3-tiny-custom.cfg ../backup/yolov3-tiny-custom_final.weights ../dataset/image/images248.jpg
7-3. Object Detection 결과 확인
import matplotlib.image as img
import matplotlib.pyplot as pp
fileName = 'predictions.jpg'
ndarray = img.imread(fileName)
pp.imshow(ndarray)
pp.show()
YOLOv3 Object Detection 2 (0) | 2022.07.04 |
---|---|
Top_5_Correctness (0) | 2022.07.04 |
CNN(Convolutional Neural Network)-CIFAR 100_ResNet50V2 (0) | 2022.07.04 |
CNN(Convolutional Neural Network)-CIFAR 10_Functional API Modeling (0) | 2022.06.29 |
CNN 모델 학습 시각화 (0) | 2022.06.28 |